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Abstract 

 

An analytical one-dimensional model of natural attenuation is proposed.  The asymptotical 

expansion for large time of analytical solutions in one dimension are found. Approximate 

analytical solutions of the solute-transport equation for an arbitrary source of 

contamination are analyzed. A graphical method of building the solution of the solute-

transport equation is demonstrated. 
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1 Introduction 

 

The process of natural attenuation defined as the process of reduction of the level of 

contamination due to biodegradation, dispersion, sorption or volatilization, has been modeled by 

different equations all of which are derivatives from the generic mass balance equation in porous 

media. The main difference between existing models is in their ability to model the actual 

process of natural attenuation: some assume a constant source of contamination [1,2], some 

postulate exponentially decreasing in time source of contamination [3,4], however none of the 

existing models have solved analytically the equation describing natural attenuation for a generic 

time-dependent source of contamination. We propose a new analytical method of solving the 

solute-transport equation by approximating a time dependent source with a multiple step-

functional sources. In addition, we derive asymptotic expressions for a constant and a step-

functional source in the large time approximation. This approximation in especially useful when 

predicting the extent and time of contamination decrease below allowable safety standards. 

 

One of the most frequently encountered problems in the environmental research is to correctly 

describe a contamination source. In practical applications, frequently the source behavior is 

unknown and thus impossible to describe. We propose a new method in dealing with this 

problem: instead of estimating the source which in case of groundwater contamination is almost 

impossible, we propose to install a monitoring well in the direction of the flow of groundwater at 

the edge of the contaminated soil area. This way the well will serve as a point of contamination 

source for more remote areas down the stream. Measuring contamination in the “source well” 

will provide needed information for our model to predict contamination at any location for any 

time. 

 

Groundwater is believed to be flowing in the direction of the gradient under the action of 

gravitational force. However, we believe that there is evidence that groundwater does not always 

flow “downhill”. Then the only explanation of this phenomenon is to attribute the flow of 

groundwater to the existence of the underground reservoir of water whence the groundwater 

originates. In our model we assume that the speed of groundwater is independent of distance. 

This is a good approximation for horizontally flowing groundwater. However, for mountainous 
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areas where groundwater may have a varying speed, the assumption of constancy of the speed 

becomes invalid and our model will have to be modified to give realistic results. 

 

2 The Differential Equation for the Solute Transport 

 

The solute transport in groundwater is described by the following equation: 

 

𝑅
𝜕𝐶

𝜕𝑡
= −

𝜕

𝜕𝑥
(𝑣𝑥𝐶 − 𝐷𝑥

𝜕𝐶

𝜕𝑥
)

−
𝜕

𝜕𝑦
(𝑣𝑦𝐶 − 𝐷𝑦

𝜕𝐶

𝜕𝑦
)

−
𝜕

𝜕𝑧
(𝑣𝑧𝐶 − 𝐷𝑧

𝜕𝐶

𝜕𝑧
)

− 𝜆𝐶 

(1) 

 

Concentration of the contamination changes due to the change of the flux through space and 

biodegradation. Assuming 𝑣𝑦 = 𝑣𝑧 = 0 , 𝐷𝑦 = 𝐷𝑧 = 0, and the speed and dispersivity are same 

everywhere in space, equation (1) reduces to the following equation: 

 

𝑅
𝜕𝐶

𝜕𝑡
= −𝑣𝑥

𝜕𝐶

𝜕𝑥
+ 𝐷𝑥

𝜕2𝐶

𝜕𝑥2
− 𝜆𝐶 (2) 

 

where R is the coefficient of retardation, 𝐶 is the contaminant concentration , 𝜆 is the first-order 

biodegradation decay rate , 𝑣𝑥 is speed, 𝐷𝑥 is the coefficient of hydrodynamic dispersion defined 

by the equation: 

 

𝐷𝑥 = 𝛼𝑥𝑣𝑥 + 𝑤𝐷                    (3) 

 

where 𝛼𝑥 is the longitudinal dispersivity, 𝑤 is an empirical constant, and 𝐷 is the coefficient of 

diffusion. The first term in Eq(3) is a contribution of mechanical dispersion while the second 

term is a correction due to molecular dispersion. 
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3 The Analytical Model 

 

We shall assume that the solute motion is described by the equation: 

 

𝜕𝐶

𝜕𝑡
= −𝑣𝑐

𝜕𝐶

𝜕𝑥
+ 𝐷𝑅

𝜕2𝐶

𝜕𝑥2
− 𝜆𝑅𝐶 (4) 

 

where 𝑣𝑐 = 𝑣𝑥/𝑅, 𝐷𝑅 = 𝐷𝑥/𝑅, 𝜆𝑅 = 𝜆/𝑅 are the velocity, dispersion and biodegradation rate of 

the retarded contaminant.  

 

To solve the solute-transport equation (4), one has to define the boundary conditions: 𝐶0(𝑡) =

𝐶(𝑥 = 0, 𝑡), 𝐶(𝑥 = ∞, 𝑡), 𝐶(𝑥, 𝑡 = 0). The first condition defines the source. The second 

condition defines the asymptotic value of contamination, the third condition defines the initial 

condition before the source is turned on. 

 

The exact solution of the solute-transport equation is known only for a very limited 

configurations of the source. However, we can approximate arbitrary function 𝐶0(𝑡) by its 

discrete values connected with a step-function. The total solution will be given by the 

superposition of each individual solutions: 

 

𝐶(𝑡, 𝑥) ≅  ∑ 𝐶𝑖(𝑡, 𝑥) (5) 

 

The total amount of contamination over the period of time T is  

 

𝑀𝑡𝑜𝑡~ ∫ 𝐶0(𝑡)𝑑𝑡
𝑇

0

= ∑ 𝐶0(𝑡𝑖
𝑐)∆𝑡𝑖

𝑐 (6) 

 

Where 𝑡𝑖
𝑐 is moment in time when the source contamination becomes 𝐶0(𝑡𝑖

𝑐), and ∆𝑡𝑖
𝑐 is the 

interval of time corresponding to the duration of that discrete value. 
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3.1 Constant Source Solutions 

 

We shall assume that molecular diffusion is zero ( D=0 ). For constant source 𝐶0(𝑡) = 𝐶0, 

contamination 𝐶(𝑡, 𝑥) can be calculated as [1,2] (see Figure 1 and Figure 2) 

 

𝐶(𝑡, 𝑥) = (
𝐶0

2
) 𝑒𝑥𝑝 [

𝑥

2𝛼𝑥

(1 − 𝛾)] ∙ 𝑒𝑟𝑓𝑐 (
𝑥 − 𝑣𝑐𝑡𝛾

2√𝐷𝑅𝑡
)

+ (
𝐶0

2
) 𝑒𝑥𝑝 [

𝑥

2𝛼𝑥

(1 + 𝛾)] ∙ 𝑒𝑟𝑓𝑐 (
𝑥 + 𝑣𝑐𝑡𝛾

2√𝐷𝑅𝑡
) 

        

(7) 

  

Where  

 

𝛾 = √1 +
4𝜆𝑅𝛼𝑥

𝑣𝑐
 (8) 

 

𝑒𝑟𝑓𝑐(𝑦) = 1 − erf(𝑦) = 1 −
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑦

0

 (9) 

 

And 𝐷𝑅 = 𝛼𝑥𝑣𝑐 is the coefficient of mechanical dispersion.  

 

If the source concentration varies in time exponentially: 𝐶0(𝑡) = 𝐶0𝑒−𝑘𝑡, 𝐶(𝑡, 𝑥) is given by (7) 

where instead of 𝜆𝑅 one has to substitute (𝜆𝑅 − 𝑘) [3,4]. 

 

For large y, erfc(y) can be asymptotically expanded as 

 

𝑒𝑟𝑓𝑐(𝑦) =
𝑒−𝑦2

𝑦√𝜋
∑(−1)𝑛

(2𝑛 − 1)‼

(2𝑦2)𝑛

∞

𝑛=0

 (10) 

 

Asymptotic expansion for large 𝑡 ≫ 𝑥/(𝑣𝑐𝛾)  and 𝑥 ≥ 4𝑎𝑥 
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𝐶(𝑡, 𝑥) = 𝐶0 𝑒𝑥𝑝 [
𝑥

2𝛼𝑥

(1 − 𝛾)] − 2𝐶0  
√𝐷𝑅

(𝑣𝑐𝛾)2
𝑥 ∙ 𝑒𝑥𝑝 [

𝑥

2𝛼𝑥
] ∙ t−3/2exp [−

(𝑣𝑐𝛾)2

4𝐷𝑅
𝑡] (11) 

 

 

Small Dispersion Approximation. Assuming that the mechanical dispersion is small: 𝐷𝑅 ≪
𝑣𝑐

2

𝜆𝑅
   

(i.e. 
𝜆𝑅𝛼𝑥

𝑣𝑐
≪ 1  or  𝛾 ≅ 1 +

2𝜆𝑅𝛼𝑥

𝑣𝑐
 ), one can analytically calculate the asymptotic expansion of the 

solution for large time t (𝑡 ≫ 𝑡0) and distances greater than dispersion scale ( 𝑥 > 4𝑎𝑥) (see 

Figure 2.) 

 

𝐶(𝑡, 𝑥) = 𝐶0 𝑒𝑥𝑝 [−
𝜆𝑅

𝑣𝑐
𝑥] − 2𝐶0 𝑒𝑥𝑝 [

𝑥

2𝛼𝑥
]

𝑥√𝑎𝑥𝑣𝑐

𝑣𝑐
2

t−3/2exp [−𝜆𝑅𝑡 −
𝑣𝑐

4𝛼𝑥
𝑡] (12) 

  

 

Large Biodegradation Approximation. If the rate of biodegradation is large: 𝜆𝑅 ≫
𝑣𝑐

2

𝐷𝑅
  ( i.e. 

𝜆𝑅𝑎𝑥

𝑣𝑐
≫ 1 𝑜𝑟 𝛾 ≅ 2√

𝜆𝑅𝛼𝑥

𝑣𝑐
 ), for large time t (𝑡 ≫ 𝑡0) and distances greater than dispersion scale   

(𝑥 > 4𝑎𝑥) 

 

𝐶(𝑡, 𝑥) = 𝐶0 𝑒𝑥𝑝 [−√
𝜆𝑅𝛼𝑥

𝑣𝑐

𝑥

𝛼𝑥
] −

1

2
𝐶0 𝑒𝑥𝑝 [

𝑥

2𝛼𝑥
] ∙

𝑥

𝜆𝑅√𝑎𝑥𝑣𝑐 
t−3/2exp[−𝜆𝑅𝑡] (13) 

 

 

3.2 The Generic Solution 

 

 

The generic solution for an arbitrary source 𝐶0(𝑡) can be calculated as the sum step-functional 

components of 𝐶0(𝑡) (see Figure 3 and Figure 4): 

 

𝐶(𝑡, 𝑥) = ∑(𝐶(𝑡 − 𝑡𝑖
𝑐 , 𝑥) − 𝐶(𝑡 − 𝑡𝑖

𝑐 − ∆𝑡𝑖
𝑐 , 𝑥)) (14) 
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𝐶(𝑡, 𝑥) = ∑ {(
𝐶0(𝑡𝑖

𝑐)

2
) 𝑒𝑥𝑝 [

𝑥

2𝛼𝑥

(1 − 𝛾)] ∙ 𝑒𝑟𝑓𝑐 (
𝑥 − 𝑣𝑐(𝑡 − 𝑡𝑖

𝑐)𝛾

2√𝐷𝑅(𝑡 − 𝑡𝑖
𝑐)

)

+ (
𝐶0(𝑡𝑖

𝑐)

2
) 𝑒𝑥𝑝 [

𝑥

2𝛼𝑥

(1 + 𝛾)] ∙ 𝑒𝑟𝑓𝑐 (
𝑥 + 𝑣𝑐(𝑡 − 𝑡𝑖

𝑐)𝛾

2√𝐷𝑅(𝑡 − 𝑡𝑖
𝑐)

)

− (
𝐶0(𝑡𝑖

𝑐)

2
) 𝑒𝑥𝑝 [

𝑥

2𝛼𝑥

(1 − 𝛾)] ∙ 𝑒𝑟𝑓𝑐 (
𝑥 − 𝑣𝑐(𝑡 − 𝑡𝑖

𝑐 − ∆𝑡𝑖
𝑐)𝛾

2√𝐷𝑅(𝑡 − 𝑡𝑖
𝑐 − ∆𝑡𝑖

𝑐)
)

− (
𝐶0(𝑡𝑖

𝑐)

2
) 𝑒𝑥𝑝 [

𝑥

2𝛼𝑥

(1 + 𝛾)] ∙ 𝑒𝑟𝑓𝑐 (
𝑥 + 𝑣𝑐(𝑡 − 𝑡𝑖

𝑐 − ∆𝑡𝑖
𝑐)𝛾

2√𝐷𝑅(𝑡 − 𝑡𝑖
𝑐 − ∆𝑡𝑖

𝑐)
)} 

(15) 

 

For large 𝑡 ≫ 𝑡𝑖
𝑐 + ∆𝑡𝑖

𝑐 + 𝑡0  : 

 

𝐶(𝑡, 𝑥) = 2
√𝐷𝑅

(𝑣𝑐𝛾)2
∑ 𝐶0(𝑡𝑖

𝑐, ∆𝑡𝑖
𝑐) 𝑥 ∙ 𝑒𝑥𝑝 [

𝑥

2𝛼𝑥
] 𝑡−3/2exp [−

(𝑣𝑐𝛾)2

4𝐷𝑅
𝑡] (16) 

 

Where 

 

𝐶0(𝑡𝑖
𝑐 , ∆𝑡𝑖

𝑐) = 𝐶0(𝑡𝑖
𝑐) (1 − exp [−

(𝑣𝑐𝛾)2

4𝐷𝑅
∆𝑡𝑖

𝑐]) (17) 

 

From equation (16), one can derive the formula for the plume evolution (the contamination 

change in time at any location of the plume):  

 

𝐶(𝑡 + ∆𝑡, 𝑥) = 𝐶(𝑡, 𝑥)exp [−
(𝑣𝑐𝛾)2

4𝐷𝑅
∆𝑡] (18) 
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3.3 Analytical Study of the Generic Solution 

 

The solution (15), which is the generic solution to the solute-transport equation in one dimension 

with a step-functional source, can be studied analytically by employing the analytical form of the 

error function [5] 

 

erf c(𝑥) = 1 − 𝑠𝑔𝑛(𝑥)√1 − exp (−𝑥2
4/𝜋 + 𝛼𝑥2

1 + 𝛼𝑥2
) (19) 

 

where 𝛼 = 0.147. 

 

Analytical solutions are depicted graphically for various values of the parameters: 

𝜆, 𝑣𝑐, 𝑎𝑥, 𝐶0, 𝑋, 𝑇, 𝑡𝑐 in Figures 3-6. 

 

Time dependency of the contamination for a step-functional source for different locations is 

depicted in Figure 3. As expected, contamination reaches the closest location first. It increases 

slowly (approximately for 1000 days), reaches its maximum and then begins to decrease at a 

slower rate (for approximately 1500 days) until it reaches zero. The farther the location, the 

smaller is the maximum value of the contamination reached, while the duration of contamination 

stays approximately the same.  

 

Movement of contamination in space is depicted in Figure 4. Its amplitude decreases 

exponentially with distance: damping of the amplitude occurs at the rate of 1% between 700 m 

and 1400 m and approximately 99% between the source (0 m) and 700 m. 

 

Time dependency of contamination for a step-functional source for various values of 𝜆, 𝑣𝑐 , 𝑎𝑥 is 

depicted in Figure 5. λ and ax only very slightly affect the time it takes for the contamination to 

reach a certain location in space. They only influence the amplitude of the contamination: the 

smaller λ and the greater ax, the greater the amplitude. The speed, on the other hand, influences 

both – the time it takes for the contamination to reach a certain location and its amplitude: the 

greater the speed, the smaller the time and the greater the amplitude.  
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Distribution of contamination in space for a step-functional source for various values of 

parameters 𝜆, 𝑣𝑐 , 𝑎𝑥 is depicted in Figure 5. λ has no effect on the extent of contamination. It 

influences the magnitude of contamination: the greater the λ, the smaller the magnitude of 

contamination. ax , on the other hand, has affect on the extend as well as the amplitude of 

contamination: the greater the ax, the great the extent and the amplitude of contamination. The 

speed influences only the location of contamination and its amplitude, and has no effect on the 

extent of contamination. The greater the speed, the farther the contamination and the greater its 

amplitude. 

  

 

3.4 1,2-DCP Model 

 

We have applied the developed model to realistic set of data of 1,2-Dichloropropane (1,2-DCP) 

(See Table 1 below). The data for 1,2-DCP was collected between July 2000 and Jan 2004. We 

have approximated the contamination rate before Ju ;y 2000 and after Jan 2004. In addition, we 

have assumed that the biodegradation rate is equal to 0.1 yr
-1

, the groundwater velocity is 50 

m/yr and the mechanical dispersivity is 10 m.  

 

Table 3.1. The Data Set. 

 

Jul-00 Nov-00 Mar-01 Jul-01 Oct-01 Feb-02 May-02 Jul-02 Oct-02 Feb-03 May-03 Aug-03 Jan-04 

112 188 168 254 322 2,300 4100 5100 5700 6200 6300 6000 2700 

 

 

In Figure 6A, time dependency of 1,2-DCP at x=660m is depicted. In Novembre 2030, 1,2-DCP 

concentration reaches the MCL level (5 ug/L) (The value obtained graphically).  

 

In Figure 6B, the distribution of 1,2-DCP in space in December 2016 is depicted. At x = 1170 m 

DCP concentration drops below the MCL level. 
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4 Conclusions 

 

A generic solution to the solute-transport equation with a constant source was studied 

asymptotically. For large t (𝑡 ≫ 𝑡0), we saw that, in the approximation of small dispersion 

(𝐷𝑅 ≪
𝑣𝑐

2

𝜆𝑅
 ) the plume dissipates with distance as 𝑒𝑥𝑝 [−

𝜆

𝑣𝑐
𝑥] and degrades in time as 

t−3/2exp [−𝜆𝑡 −
𝑣𝑐

4𝛼𝑥
𝑡]. In the approximation of large biodegradation rate ( 𝜆 ≫

𝑣𝑐
2

𝐷𝑥
 ), the plume 

dissipates with distance as exp (−√
𝜆𝑎𝑥 

𝑣𝑐

𝑥

𝑎𝑥
) and degrades in time as t−3/2exp[−𝜆𝑡].  

 

Using a constant-source solution, we derived an analytical form of a generic solution for an 

arbitrary source 𝐶0(𝑡). For large t (𝑡 ≫ 𝑡𝑖
𝑐 + ∆𝑡𝑖

𝑐 + 𝑡0), we saw that the plume degrades in time 

as 𝑡−3/2exp [−
(𝑣𝑐𝛾)2

4𝐷𝑅
𝑡]. 

 

We used analytical form of the erfc(x) function to analyze graphically generic solutions for 

arbitrary time for a realistic set of data to predict the time and distance of dropping 

contamination concentration below MCL level. 

 

Groundwater contamination is one of the most notorious problems in the environmental sciences. 

It is one of the most difficult to monitor as well. Our approach to this problem can be 

summarized as: 

1. Identify the area where the contamination occurred. Install a groundwater monitoring 

well at the edge of contamination zone. Monitor contamination in this “source well”. It 

will provide necessary information about the rate at which the groundwater is 

contaminated. 

2. Measure the hydrogeologic parameters: the speed of groundwater, dispersivity. 

3. Measure the first-order rate of biodegradation. One of the ways to calculate the 

biodegradation rate is by using the formula for the plume evolution (equation (18)). 

4. Use the analytical formula  
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𝐶(𝑡, 𝑥) = 2
√𝐷𝑅

(𝑣𝑐𝛾)2
∑ 𝐶0(𝑡𝑖

𝑐) 𝑥 ∙ 𝑒𝑥𝑝 [
𝑥

2𝛼𝑥
] 𝑡−3/2exp [−

(𝑣𝑐𝛾)2

4𝐷𝑅
𝑡] (20) 

 

To calculate the level of contamination along the direction of the flow of groundwater. In 

equation (20) we assumed that the time is much larger than time it takes for the 

groundwater to reach the point x since the level of contamination in the “source well” has 

become non-detectable.  

To calculate concentration of contaminants at arbitrary time at any location, one can use 

the graphical method like we did for the dataset in Table 1 (see Figure 6 A and B). 
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APPENDIX A 

A Constant Source Plots 

 

Figure A1. Contamination C(t, x) vs. Time t  plot. 

 

 

 

 

 

 

 

 

 

 

Figure A2. Contamination  C(t, x) vs. Distance x plot. 
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APPENDIX B 

A Step-Functional Source Plots 

Figure B1. Contamination C(t, x) vs. Time t  plot for a step-functional source. 

 

 

 

Figure B2. Contamination C(t, x) vs. Distance x plot for a step-functional source. 
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APPENDIX C 

Parameter Dependence of Step-Functional Source Plots 

 

  

 

 

 

 

 

Figure C1-C6. C(t, X) vs. t and  C(T, x) vs. x for a step-functional source. 
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APPENDIX D 

1,2-DCP Plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D1-D2. 1,2-DCP 
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